Гид компьютерного мира - Информационный портал
  • Главная
  • Ошибки
  • Классификация коммутаторов по возможности управления. Виды коммутаторов

Классификация коммутаторов по возможности управления. Виды коммутаторов

Свичи подразделяются на управляемые и неуправляемые (наиболее простые). Более сложные свичи позволяют управлять коммутацией на канальном (втором) и сетевом (третьем) уровне модели OSI. Обычно их именуют соответственно, например Layer 2 Switch или просто, сокращенно L2. Управление свичем может осуществляться посредством протокола Web-интерфейса, SNMP, RMON и т.п. Многие управляемые свичи позволяют выполнять дополнительные функции: VLAN, QoS, агрегирование, зеркалирование. Сложные коммутаторы можно объединять в одно логическое устройство - стек, с целью увеличения числа портов (например, можно объединить 4 коммутатора с 24 портами и получить логический коммутатор с 96 портами).

Маршрутизатор

Маршрутизатор или роутер- специализированный сетевой компьютер, имеющий минимум два сетевых интерфейса и пересылающий пакеты данных между различными сегментами сети, принимающий решения о пересылке на основании информации о топологии сети и определённых правил, заданных администратором.

Маршрутизатор работает на более высоком «сетевом» уровне 3 сетевой модели OSI, нежели коммутатор (или сетевой мост) и концентратор (хаб), которые работают соответственно на уровне 2 и уровне 1 модели OSI.

Принцип работы маршрутизатора

Обычно маршрутизатор использует адрес получателя, указанный в пакетных данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.

Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/расшифрование передаваемых данных и т. д.

Маска подсети

В терминологии сетей TCP/IP маской сети или маской подсети (network mask) называется битовая маска (bitmask), определяющая, какая часть IP-адреса (ip address) узла (host) сети относится к адресу сети, а какая - к адресу самого узла в этой сети. Чтобы получить адрес сети, зная IP-адрес и маску подсети, необходимо применить к ним операцию поразрядной конъюнкции. Например, в случае более сложной маски (битовые операции в IPv6 выглядят одинаково):

IP-адрес: 11000000 10101000 00000001 00000010 (192.168.1.2)

Маска подсети: 11111111 11111111 11111111 00000000 (255.255.255.0)

Адрес сети: 11000000 10101000 00000001 00000000 (192.168.1.0)

Бесклассовая адресация- метод IP-адресации, позволяющий гибко управлять пространством IP-адресов, не используя жёсткие рамки классовой адресации. Использование этого метода позволяет экономно использовать ограниченный ресурс IP-адресов, поскольку возможно применение различных масок подсетей к различным подсетям. Маски подсети являются основой метода бесклассовой маршрутизации (CIDR). При этом подходе маску подсети записывают вместе с IP-адресом в формате «IP-адрес/количество единичных бит в маске». Число после слэша означает количество единичных разрядов в маске подсети.

Назначение маски подсети

Маска назначается по следующей схеме (для сетей класса C), где - количество компьютеров в подсети + 2, округленное до ближайшей большей степени двойки (эта формула справедлива для ≤ 254, для > 254 будет другая формула).

Пример: В некой сети класса C есть 30 компьютеров, маска для такой сети вычисляется следующим образом:

28 - 32 = 224 (0E0h) < = > 255.255.255.224 (0xFFFFFFE0)

Проект локальной сети созданной в программе Cisco Packet Tracer:

Рисунок 1

На рисунке 1 показано логическое построение локальной сети содержащей 16 рабочих станций, 3 свитча, 2 роутера с функцией DHCP-серверов, 2 точки доступа и несколько конечных устройств, подключенных к точкам доступа.

Настройки роутеров:

Рисунок 2

Рисунок 3

Настройки свитчей:

Рисунок 4

Рисунок 5

Рисунок 6

Настройки точек доступа:

Рисунок 7

Рисунок 8


Заключение

В современных компьютерах процессоры выполнены в виде компактного модуля (размерами около 5×5×0,3 см), вставляющегося в ZIF-сокет (AMD) или на подпружинивающую конструкцию - LGA (Intel). Особенностью разъёма LGA является то, что выводы перенесены с корпуса процессора на сам разъём - socket, находящийся на материнской плате. Большая часть современных процессоров реализована в виде одного полупроводникового кристалла, содержащего миллионы, а с недавнего времени даже миллиарды транзисторов. Современные процессоры используют от 1 до 16 управляющих блоков и от 4 до 64 операционных блоков. При переходе к асинхронной схемотехнике будет оправдано использование нескольких десятков управляющих блоков и нескольких сотен операционных блоков. Такой переход вместе с соответствующим увеличением числа блоков обеспечит увеличение пиковой производительности более чем на два порядка и средней производительности более чем на порядок.

Наряду с материалами, описывающими возможные перспективы производства мультигигабитных чипов PCM по 45- или 32-нм процессу, компания ST представила прототип 128-Мбит чипа PCM, изготовленный по 90-нм технологии. К преимуществам PRAM-памяти относятся малая площадь ячейки, хорошие электрические характеристики и высокая надежность.

В ближайшие 10-20 лет, скорее всего, изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Возможно, это будут:

Оптические компьютеры - в которых вместо электрических сигналов обработке подвергаются потоки света (фотоны, а не электроны).

Квантовые компьютеры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.

Молекулярные компьютеры - вычислительные системы, использующие вычислительные возможности молекул (преимущественно, органических). Молекулярными компьютерами используется идея вычислительных возможностей расположения атомов в пространстве.

Твердотельный накопитель

Твердотéльный накопитель (англ. SSD, solid-state drive) - компьютерное немеханическое запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флеш-памяти.

В настоящее время твердотельные накопители используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах, но могут быть использованы и в стационарных компьютерах для повышения производительности. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например, Samsung продал бизнес по производству жёстких дисков компании Seagate. Существуют и так называемые гибридные жесткие диски, появившиеся, в том числе, из-за текущей, пропорционально более высокой стоимости твердотельных накопителей. Такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления).

Эти накопители, построены на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость. Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования. Примером таких накопителей является I-RAM. Пользователи, обладающие достаточным объёмом оперативной памяти, могут организовать виртуальную машину и расположить её жёсткий диск в ОЗУ и оценить производительность.

Общая классификация коммутаторов

Компьютерная сеть это группа компьютеров, соединенных друг с другом каналом связи. Канал обеспечивает обмен данными внутри сети, то есть обмен данными между компьютерами данной группы. Сеть может состоять из двух-трех компьютеров, а может объединять несколько тысяч ПК. Физически обмен данными между компьютерами может осуществляться по специальному кабелю, волоконно-оптическому кабелю или через витую пару .

Объединять компьютеры в сеть и обеспечивать их взаимодействие помогают сетевые аппаратные и аппаратно-программные средства. Эти средства можно разделить на следующие группы по их основному функциональному назначению:

Пассивное сетевое оборудование соединительные разъёмы, кабели, коммутационные шнуры, коммутационные панели, телекоммуникационные розетки и т.д.;

Активное сетевое оборудование преобразователи/адаптеры, модемы, повторители, мосты, коммутаторы, маршрутизаторы и т.д.

В настоящее время развитие компьютерных сетей происходит по следующим направлениям:

Увеличение скорости;

Внедрение сегментирования на основе коммутации;

Объединение сетей при помощи маршрутизации.

Коммутация второго уровня

Рассматривая свойства второго уровня эталонной модели ISO/OSI и его классическое определение, можно увидеть, что данному уровню принадлежит основная доля коммутирующих свойств.

Канальный уровень обеспечивает надежный транзит данных через физический канал. В частности, он решает вопросы физической адресации (в противоположность сетевой или логической адресации), топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации.

На самом деле, определяемая канальным уровнем модели OSI функциональность служит платформой для некоторых из сегодняшних наиболее эффективных технологий. Большое значение функциональности второго уровня подчеркивает тот факт, что производители оборудования продолжают вкладывать значительные средства в разработку устройств с такими функциями, то есть коммутаторов .

Коммутация третьего уровня

Коммутация на третьем уровне? это аппаратная маршрутизация. Традиционные маршрутизаторы реализуют свои функции с помощью программно-управляемых процессоров, что будем называть программной маршрутизацией. Традиционные маршрутизаторы обычно продвигают пакеты со скоростью около 500000 пакетов в секунду. Коммутаторы третьего уровня сегодня работают со скоростью до 50 миллионов пакетов в секунду. Возможно и дальнейшее ее повышение, так как каждый интерфейсный модуль, как и в коммутаторе второго уровня, оснащен собственным процессором продвижения пакетов на основе ASIC. Так что наращивание количества модулей ведет к наращиванию производительности маршрутизации. Использование высокоскоростной технологии больших заказных интегральных схем (ASIC) является главной характеристикой, отличающей коммутаторы третьего уровня от традиционных маршрутизаторов .

Коммутатор - это устройство, функционирующее на втором/третьем уровне эталонной модели ISO/OSI и предназначенное для объединения сегментов сети, работающих на основе одного протокола канального/сетевого уровня. Коммутатор направляет трафик только через один порт, необходимый для достижения места назначения.

На рисунке (см. рисунок 1) представлена классификация коммутаторов по возможностям управления и в соответствии с эталонной моделью ISO/OSI.

Рисунок 1 Классификация коммутаторов

Рассмотрим подробнее назначение и возможности каждого из видов коммутаторов.

Неуправляемый коммутатор? это устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного или нескольких сегментов сети. Он передаёт данные только непосредственно получателю, исключение составляет широковещательный трафик всем узлам сети. Никаких других функций неуправляемый коммутатор выполнять не может.

Управляемые коммутаторы представляют собой более сложные устройства, позволяющие выполнять набор функции второго и третьего уровней модели ISO/OSI. Управление ими может осуществляться посредством Web-интерфейса, командной строки через консольный порт или удаленно по протоколу SSH, а также с помощью протокола SNMP .

Настраиваемые коммутаторы предоставляют пользователям возможность настраивать определенные параметры с помощью простых утилит управления, Web-интерфейса, упрощенного интерфейса командной строки и протокола SNMP.

Коммутаторы уровня 2 анализируют входящие кадры, принимают решение об их дальнейшей передаче и передают их пунктам назначения на основе МАС-адресов канального уровня модели OSI. Основное преимущество коммутаторов уровня 2 - прозрачность для протоколов верхнего уровня. Так как коммутатор функционирует на втором уровне, ему нет необходимости анализировать информацию верхних уровней модели OSI.

Коммутаторы уровня 3 осуществляют коммутацию и фильтрацию на основе адресов канального (уровень 2) и сетевого (уровень 3) уровней модели OSI. Такие коммутаторы динамически решают, коммутировать (уровень 2) или маршрутизировать (уровень 3) входящий трафик . Коммутаторы 3-го уровня выполняют коммутацию в пределах рабочей группы и маршрутизацию между различными подсетями или виртуальными локальными сетями (VLAN).


Основу компьютерных сетей составляют коммутаторы, позволяющие объединять сотни вычислительных устройств в единый кластер с обеспечением требуемого уровня надежности, пропускной способности, информационной безопасности. На примере коммутаторов производства компании

«D-Link»рассмотрим основные принципы построения и управления коммутируемыми компютерными сетями. Коммутаторы локальной сети можно классифицировать по возможности управления. Существует три категории коммутаторов:
неуправляемые коммутаторы;
управляемые коммутаторы;
настраиваемые коммутаторы.
Неуправляемые коммутаторы не поддерживают возможности управления и обновления программного обеспечения.
Управляемые коммутаторы являются сложными устройствами, позволяющими выполнять расширенный набор функций 2-го и 3-го уровня модели OSI. Управление коммутаторами может осуществляться посредством Web-интерфейса, командной строки (CLI), протокола SNMP, Telnet и т.д.
Настраиваемые коммутаторы занимают промежуточную позицию между ними. Они предоставляют пользователям возможность настраивать определенные параметры сети с помощью интуитивно понятных утилит управления, Web-интерфейса, упрощенного интерфейса командной строки, протокола SNMP.
Большинство современных коммутаторов поддерживают различные функции управления и мониторинга. К ним относятся дружественный пользователю Web-интерфейсуправления,интерфейскомандной строки (Command Line Interface,CLI), Telnet,SNMP-управление. В коммутаторах

D-Link серииSmartтакже реализованаподдержканачальной настройки и обновления программного обеспечения через утилиту D-Link SmartConsoleUtility.
Web-интерфейс управления позволяет осуществлять настройку и мониторинг параметров коммутатора, используя любой компьютер, оснащенный стандартным Web-браузером. Браузер представляет собой универсальное средство доступа и может непосредственно подключаться к коммутатору по протоколу HTTP.
Главная страница Web-интерфейса обеспечивает доступ к различным настройкам коммутатора и отображает всю необходимую информацию об устройстве. Администратор может быстро посмотреть статус устройства, статистику по производительности и т.д., а также произвести необходимые настройки.
Доступк интерфейсу командной строки коммутатора осуществляется путем подключения к его консольному порту терминала или персонального компьютера с установленной программой эмуляции терминала. Этометод доступанаиболее удобен при первоначальном подключении к коммутатору, когдазначениеIP-адреса неизвестно или не установлено, в случае необходимости восстановления пароля и при выполнении расширенных настроек коммутатора. Такжедоступк интерфейсу командной строки может быть полученпосети с помощью протокола Telnet.
Пользовательможет использовать для настройки коммутатора любой удобный емуинтерфейсуправления, т.к. набор доступных через разные интерфейсы управления функций одинаков для каждой конкретной модели.
Еще один способ управления коммутатором — использование протоколаSNMP. Коммутаторами D-Link поддерживается протоколSNMPверсий 1, 2с и 3.
Также стоит отметить возможность обновления программного обеспечения коммутаторов (за исключением неуправляемых). Это обеспечивает более долгий срок эксплуатации устройств, т.к. позволяет добавлять новые функции либо устранять имеющиеся ошибкипомере выхода новых версийПО, что существенно облегчает и удешевляет использование устройств. Компания D-Link распространяет новые версииПОбесплатно. Сюда же можно включить возможность сохранения настроек коммутатора на случай сбоев с последующим восстановлением или тиражированием, что избавляет администратора от выполнения рутинной работы.
Существует большое количество команд CLI. Команды бывают сложные, многоуровневые, требующие ввода большого количества параметров, и простые, состоящие из одного параметра.
При работе в CLI можно вводить сокращенный вариант команды. Например, если ввести команду «sh sw», то коммутатор интерпретирует эту команду как «show switch».
Команды«Show»являются удобным средством проверки состояния и параметров коммутатора, предоставляя информацию, требуемую для мониторинга и поиска неисправностей в работе коммутаторов. Ниже приведен список наиболее общих команд «Show»:

show config - используется для отображения конфигурации, сохраненной в NVRAMили созданной в текущий момент,
show fdb - используется для отображения текущей таблицы коммутации,
show swtch - используется для отображения общей информации о коммутаторе,
show

Device_status

- используется для отображения состояния внутреннего и внешнего питания,
show error ports - используется для отображения статистики об ошибках для заданного диапазона портов,
show packet ports - используется для отображения статистики о переданных и полученных портом пакетах,
show firmwareinformation - используется для отображения информации о программном обеспечении коммутатора (прошивке),
show ipif - используется для отображения информации о настройках IP-интерфейса на коммутаторе,
show log - используется для просмотра Log-файла коммутатора.

Как выбрать коммутатор при существующеи разнообразии? Функциональность современных моделей очень разная. Можно приобрести как простейший неуправляемый свитч, так и многофункциональный управляемый коммутатор, немногим отличающийся от полноценного роутера. В качестве примера последнего можно привести Mikrotik CRS125-24G-1S-2HND-IN из новой линейки Cloud Router Switch. Соответственно, и цена таких моделей будет гораздо выше.

Поэтому при выборе коммутатора прежде всего нужно определиться, какие из функций и параметров современных свитчей вам необходимы, а за какие не стоит переплачивать. Но сначала - немного теории.

Виды коммутаторов

Однако если раньше управляемые коммутаторы отличались от неуправляемых, в том числе, более широким набором функций, то сейчас разница может быть только в возможности или невозможности удаленного управления устройством. В остальном - даже в самые простые модели производители добавляют дополнительный функционал, частенько повышая при этом их стоимость.

Поэтому на данный момент более информативна классификация коммутаторов по уровням.

Уровни коммутаторов

Для того, чтобы выбрать коммутатор, оптимально подходящий под наши нужды, нужно знать его уровень. Этот параметр определяется на основании того, какую сетевую модель OSI (передачи данных) использует устройство.

  • Устройства первого уровня , использующие физическую передачу данных, уже практически исчезли с рынка. Если кто-то еще помнит хабы - то это как раз пример физического уровня, когда информация передается сплошным потоком.
  • Уровень 2 . К нему относятся практически все неуправляемые коммутаторы. Используется так называемая канальная сетевая модель. Устройства разделяют поступающую информацию на отдельные пакеты (кадры, фреймы), проверяют их и направляют конкретному девайсу-получателю. Основа распределения информации в коммутаторах второго уровня - MAC-адреса. Из них свитч составляет таблицу адресации, запоминая, какому порту какой MAC-адрес соответствует. IP-адреса они не понимают.

  • Уровень 3 . Выбрав такой коммутатор, вы получаете устройство, которое уже работает с IP-адресами. А также поддерживает множество других возможностей работы с данными: преобразование логических адресов в физические, сетевое протоколы IPv4, IPv6, IPX и т.д., соединения pptp, pppoe, vpn и другие. На третьем, сетевом уровне передачи данных, работают практически все маршрутизаторы и наиболее "продвинутая" часть коммутаторов.

  • Уровень 4 . Сетевая модель OSI, которая здесь используется, называется транспортной . Даже не все роутеры выпускаются с поддержкой этой модели. Распределение трафика происходит на интеллектуальном уровне - устройство умеет работать с приложениями и на основании заголовков пакетов с данными направлять их по нужному адресу. Кроме того, протоколы транспортного уровня, к примеру TCP, гарантируют надежность доставки пакетов, сохранение определенной последовательности их передачи и умеют оптимизировать трафик.

Выбираем коммутатор - читаем характеристики

Как выбрать коммутатор по параметрам и функциям? Рассмотрим, что подразумевается под некоторыми из часто встречающихся обозначений в характеристиках. К базовым параметрам относятся:

Количество портов . Их число варьируется от 5 до 48. При выборе коммутатора лучше предусмотреть запас для дальнейшего расширения сети.

Базовая скорость передачи данных . Чаще всего мы видим обозначение 10/100/1000 Мбит/сек - скорости, которые поддерживает каждый порт устройства. Т. е. выбранный коммутатор может работать со скоростью 10 Мбит/сек, 100 Мбит/сек или 1000 Мбит/сек. Достаточно много моделей, которые оснащены и гигабитными, и портами 10/100 Мб/сек. Большинство современных коммутаторов работают по стандарту IEEE 802.3 Nway, автоматически определяя скорость портов.

Пропускная способность и внутренняя пропускная способность. Первая величина, называемая еще коммутационной матрицей - это максимальный объем трафика, который может быть пропущен через коммутатор в единицу времени. Вычисляется очень просто: кол-во портов х скорость порта х 2 (дуплекс). К примеру, 8-портовый гигабитный коммутатор имеет пропускную способность в 16 Гбит/сек.
Внутренняя пропускная способность обычно обозначается производителем и нужна только для сравнения с предыдущей величиной. Если заявленная внутренняя пропускная способность меньше максимальной - устройство будет плохо справляться с большими нагрузками, тормозить и зависать.

Автоматическое определение MDI/MDI-X . Это автоопределение и поддержка обоих стандартов, по которым была обжата витая пара, без необходимости ручного контроля соединений.

Слоты расширения . Возможность подключения дополнительных интерфейсов, например, оптических.

Размер таблицы MAC-адресов . Для выбора коммутатора важно заранее просчитать необходимый вам размер таблицы, желательно с учетом будущего расширения сети. Если записей в таблице не будет хватать, коммутатор будет записывать новые поверх старых, и это будет тормозить передачу данных.

Форм-фактор . Коммутаторы выпускаются в двух разновидностях корпуса: настольный/настенный вариант размещения и для стойки. В последнем случае принят стандартный размер устройства -19-дюймов. Специальные ушки для крепления в стойку могут быть съемными.

Выбираем коммутатор с нужными нам функциями для работы с трафиком

Управление потоком (Flow Control , протокол IEEE 802.3x). Предусматривает согласование приема-отправки данных между отправляющим устройством и коммутатором при высоких нагрузках, во избежание потерь пакетов. Функция поддерживается почти каждым свитчом.

Jumbo Frame - увеличенные пакеты. Применяется для скоростей от 1 гбит/сек и выше, позволяет ускорить передачу данных за счет уменьшения количества пакетов и времени на их обработку. Функция есть почти в каждом коммутаторе.

Режимы Full-duplex и Half-duplex . Практически все современные свитчи поддерживают автосогласование между полудуплексом и полным дуплексом (передача данных только в одну сторону, передача данных в обе стороны одновременно) во избежание проблем в сети.

Приоритезация трафика (стандарт IEEE 802.1p) - устройство умеет определять более важные пакеты (например, VoIP) и отправлять их в первую очередь. Выбирая коммутатор для сети, где весомую часть трафика будет составлять аудио или видео, стоит обратить внимание на эту функцию

Поддержка VLAN (стандарт IEEE 802.1q ). VLAN - удобное средство для разграничения отдельных участков: внутренней сети предприятия и сети общего пользования для клиентов, различных отделов и т.п.

Для обеспечения безопасности внутри сети, контроля или проверки производительности сетевого оборудования, может использоваться зеркалирование (дублирование трафика). К примеру, вся поступающая информация отправляется на один порт для проверки или записи определенным ПО.

Перенаправление портов . Эта функция вам может понадобиться для развертывания сервера с доступом в интернет, или для онлайн-игр.

Защита от "петель" - функции STP и LBD . Особенно важны при выборе неуправляемых коммутаторов. В них обнаружить образовавшуюся петлю - закольцованный участок сети, причину многих глюков и зависаний - практически невозможно. LoopBack Detection автоматически блокирует порт, на котором произошло образование петли. Протокол STP (IEEE 802.1d) и его более совершенные потомки - IEEE 802.1w, IEEE 802.1s - действуют немного иначе, оптимизируя сеть под древовидную структуру. Изначально в структуре предусмотрены запасные, закольцованные ветви. По умолчанию они отключены, и коммутатор запускает их только тогда, когда происходит разрыв связи на какой-то основной линии.

Агрегирование каналов (IEEE 802.3ad) . Повышает пропускную способность канала, объединяя несколько физических портов в один логический. Максимальная пропускная способность по стандарту - 8 Гбит/сек.

Стекирование . Каждый производитель использует свои собственные разработки стекирования, но в общем эта функция обозначает виртуальное объединение нескольких коммутаторов в одно логическое устройство. Цель стекирования - получить большее количество портов, чем это возможно при использовании физического свитча.

Функции коммутатора для мониторинга и диагностики неисправностей

Многие коммутаторы определяют неисправность кабельного соединения, обычно при включении устройства, а также вид неисправности - обрыв жилы, короткое замыкание и т.п. Например, в D-Link предусмотрены специальные индикаторы на корпусе:

Защита от вирусного трафика (Safeguard Engine) . Методика позволяет повысить стабильность работы и защитить центральный процессор от перегрузок "мусорным" трафиком вирусных программ.

Функции электропитания

Энергосбережение. Как выбрать коммутатор, который будет экономить вам электроэнергию? Обращайте внимани е на наличие функций энергосбережения. Некоторые производители, например D-Link, выпускают коммутаторы с регулировкой потребления электроэнергии. Например, умный свитч мониторит подключенные к нему устройства, и если в данный момент какое-то из них не работает, соответствующий порт переводится в "спящий режим".

Power over Ethernet (PoE, стандарт IEEE 802.af) . Коммутатор с использованием этой технологии может питать подключенные к нему устройства по витой паре.

Встроенная грозозащита . Очень нужная функция, однако надо помнить, что такие коммутаторы должны быть заземлены, иначе защита не будет действовать.


сайт по возможности управления. Существует три категории коммутаторов:
  • неуправляемые коммутаторы;
  • управляемые коммутаторы;
  • настраиваемые коммутаторы.

Неуправляемые коммутаторы не поддерживают возможности управления и обновления программного обеспечения.

Управляемые коммутаторы являются сложными устройствами, позволяющими выполнять расширенный набор функций 2-го и 3-го уровня модели OSI . Управление коммутаторами может осуществляться посредством Web-интерфейса, командной строки ( CLI ), протокола SNMP , Telnet и т.д.

Настраиваемые коммутаторы занимают промежуточную позицию между ними. Они предоставляют пользователям возможность настраивать определенные параметры сети с помощью интуитивно понятных утилит управления, Web-интерфейса, упрощенного интерфейса командной строки, протокола SNMP .

Средства управления коммутаторами

Большинство современных коммутаторов поддерживают различные функции управления и мониторинга. К ним относятся дружественный пользователю Web- интерфейс управления, интерфейс командной строки ( Command Line Interface , CLI ), Telnet, SNMP -управление. В коммутаторах D-Link серии Smart также реализована поддержка начальной настройки и обновления программного обеспечения через утилиту D-Link SmartConsole Utility .

Web- интерфейс управления позволяет осуществлять настройку и мониторинг параметров коммутатора, используя любой компьютер , оснащенный стандартным Web-браузером. Браузер представляет собой универсальное средство доступа и может непосредственно подключаться к коммутатору по протоколу HTTP .

Главная страница Web-интерфейса обеспечивает доступ к различным настройкам коммутатора и отображает всю необходимую информацию об устройстве. Администратор может быстро посмотреть статус устройства, статистику по производительности и т.д., а также произвести необходимые настройки.

Доступ к интерфейсу командной строки коммутатора осуществляется путем подключения к его консольному порту терминала или персонального компьютера с установленной программой эмуляции терминала. Это метод доступа наиболее удобен при первоначальном подключении к коммутатору, когда значение IP-адреса неизвестно или не установлено, в случае необходимости восстановления пароля и при выполнении расширенных настроек коммутатора. Также доступ к интерфейсу командной строки может быть получен по сети с помощью протокола Telnet.

Пользователь может использовать для настройки коммутатора любой удобный ему интерфейс управления, т.к. набор доступных через разные интерфейсы управления функций одинаков для каждой конкретной модели.

Еще один способ управления коммутатором - использование протокола SNMP (Simple Network Management Protocol ). Протокол SNMP является протоколом 7-го уровня модели OSI и разработан специально для управления и мониторинга сетевыми устройствами и приложениями связи. Это выполняется путем обмена управляющей информацией между агентами, располагающимися на сетевых устройствах, и менеджерами, расположенными на станциях управления. Коммутаторами D-Link поддерживается протокол SNMP версий 1, 2с и 3.

Также стоит отметить возможность обновления программного обеспечения коммутаторов (за исключением неуправляемых). Это обеспечивает более долгий срок эксплуатации устройств, т.к. позволяет добавлять новые функции либо устранять имеющиеся ошибки по мере выхода новых версий ПО , что существенно облегчает и удешевляет использование устройств. Компания D-Link распространяет новые версии ПО бесплатно. Сюда же можно включить возможность сохранения настроек коммутатора на случай сбоев с последующим восстановлением или тиражированием, что избавляет администратора от выполнения рутинной работы.

Подключение к коммутатору

Перед тем, как начать настройку коммутатора, необходимо установить физическое соединение между ним и рабочей станцией. Существуют два типа кабельного соединения, используемых для управления коммутатором. Первый тип - через консольный порт (если он имеется у устройства), второй - через порт Ethernet ( по протоколу Telnet или через Web- интерфейс ). Консольный порт используется для первоначальной конфигурации коммутатора и обычно не требует настройки. Для того чтобы получить доступ к коммутатору через порт Ethernet , в браузере необходимо ввести IP-адрес по умолчанию его интерфейса управления (обычно он указан в руководстве пользователя).

При подключении к медному ( разъем RJ-45 ) порту Ethernet коммутатора Ethernet -совместимых серверов, маршрутизаторов или рабочих станций используется четырехпарный кабель UTP категории 5, 5е или 6 для Gigabit Ethernet . Поскольку коммутаторы D-Link поддерживают функцию автоматического определения полярности ( MDI /MDIX), можно использовать любой тип кабеля ( прямой или кроссовый).


Рис. 2.1.

Для подключения к медному ( разъем RJ-45 ) порту Ethernet другого коммутатора также можно использовать любой четырехпарный кабель UTP категории 5, 5е, 6, при условии, что порты коммутатора поддерживают автоматическое определение полярности. В противном случае надо использовать кроссовый кабель .


Рис. 2.2.

Правильность подключения поможет определить светодиодная индикация порта. Если соответствующий индикатор горит, то связь между коммутатором и подключенным устройством установлена. Если индикатор не горит, возможно, что не включено питание одного из устройств, или возникли проблемы с сетевым адаптером подключенного устройства, или имеются неполадки с кабелем. Если индикатор загорается и гаснет, возможно, есть проблемы с автоматическим определением скорости и режимом работы (дуплекс/полудуплекс) (за подробным описанием сигналов индикаторов необходимо обратиться к руководству пользователя коммутатора конкретной модели).

Подключение к консоли интерфейса командной строки коммутатора

Управляемые коммутаторы D-Link оснащены консольным портом. В зависимости от модели коммутатора консольный порт может обладать разъемом DB-9 или RJ-45 . С помощью консольного кабеля, входящего в комплект поставки, коммутатор подключается к последовательному порту компьютера. Подключение по консоли иногда называют "Out-of-Band-подключением. Это означает, что консоль использует отличную от обычного сетевого подключения схему (не использует полосу пропускания портов Ethernet).

После подключения к консольному порту коммутатора на персональном компьютере необходимо запустить программу эмуляции терминала VT100 (например, программу HyperTerminal в Windows). В программе следует установить следующие параметры подключения, которые, как правило, указаны в документации к устройству:

DES-3528# . Теперь можно вводить команды.


Рис. 2.3.

Лучшие статьи по теме